If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x-49=0
a = 1; b = -20; c = -49;
Δ = b2-4ac
Δ = -202-4·1·(-49)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{149}}{2*1}=\frac{20-2\sqrt{149}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{149}}{2*1}=\frac{20+2\sqrt{149}}{2} $
| 5c-5c+5c=15 | | 6(10q-10)=8(12q-17)-17q | | 15q+4q-13q+4q-2q=8 | | 2x+196=360 | | 6(4s+17)=6s-6 | | 9(7=x)-5(6=2x)=0 | | 43+(x+2)=90 | | 5(3t+6)=3(6t+7) | | -4(4w+16)=16+10-7w | | 6m+m+3m=20 | | 3+9n=-150+6n | | 8f=4-6(-17f-15) | | 5b+b-4b+2b=20 | | 2x–18=2x–18 | | x^2+3x-28=0x2+3x−28=0 | | (x+13)/3=6 | | 74y-8-78y=-4y−8 | | 20s−19s=14 | | -2+6x+24-4x=8-2*6x+24-4x=8 | | n-7=-82 | | (5x-5)+3x=(7x+7) | | a+5=-27 | | 10j+7=97 | | 2x-5x+6x=-392x-5x+6x=-39 | | 30=-5(6w+6) | | -6(j+72)=18 | | -8(4+9x)=4 | | 2x-5x*6x=-392x-5x+6x=-39 | | -0.2x+5+0.6x=37 | | 4=-2r+2r | | 9(h-89)=18 | | -4a+7=6a+17 |